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abstract. — Spacecraft are complex systems that involve different subsystems with multiple 
relationships among them. For these reasons, the design of a spacecraft is a time-evolving 
process that starts from requirements and evolves over time across different design phases. 
During this process, a lot of changes can happen. They can affect mass and power at the 
component level, at the subsystem level, and even at the system level. Each spacecraft has 
to respect the overall constraints in terms of mass and power: for this reason, it’s important 
to be sure that the design does not exceed these limitations. Current practice in system 
models primarily deals with this problem, allocating margins on individual components 
and on individual subsystems. However, a statistical characterization of the fluctuations in 
mass and power of the overall system (i.e., the spacecraft) is missing. This lack of adequate 
statistical characterization would result in a risky spacecraft design that might not fit the 
mission constraints and requirements, or in a conservative design that might not fully 
utilize the available resources. Due to the complexity of the problem and to the different 
expertise and knowledge required to develop a complete risk model for a spacecraft design, 
this article is focused on risk estimation for a specific spacecraft subsystem: the commu-
nication subsystem. The current research aims to be a “proof of concept” of a risk-based 
design optimization approach, which can then be further expanded to the design of other 
subsystems as well as to the whole spacecraft. The objective of this research is to develop 
a mathematical approach to quantify the likelihood that the major design drivers of mass 
and power of a space communication system would meet the spacecraft and mission re-
quirements and constraints through the mission design lifecycle. Using this approach, the 
communication system designers will be able to evaluate and to compare different com-
munication architectures in a risk trade-off perspective. The results described in this article 
include a baseline communication system design tool and a statistical characterization of 
the design risks through a combination of historical mission data and expert opinion con-
tributions. An application example of the communication system of a university spacecraft 
is presented.  
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I. Introduction

Spacecraft are complex systems that involve different subsystems with multiple relation-
ships among them. The design of a spacecraft is a process that starts from requirements 
and evolves over time across multiple design phases. The complexity of the systems, the 
number of people involved, and the time intervals between the reviews inevitably lead to 
changes in the design. In particular, different studies on major challenges in the design of 
a mission reveal that there are “Significant deviations from expected mass, power, cost or 
performance for any element of the spacecraft.” [1]

At each design iteration, the engineers would perform new analysis based on updated 
information and assumptions, leading to a better understanding of their respective subsys-
tems. This reduces the corresponding uncertainties in the key design metrics like power and 
mass. However, during the initial design stage, engineers are forced to estimate quantities 
without a complete knowledge of their subsystems: some components might be in design 
but not finalized, some can be totally new, some can be fabricated in-house for the first 
time, and some can be fabricated externally but the knowledge about mass and power is 
not complete. 

For all those reasons, a problem arises: engineers are forced to “speculate” the values for 
mass and power at the component level and at the subsystem level, and these values inevi-
tably would fluctuate over time. This problem is crucial in spacecraft design as each mission 
is subjected to constraints in total launch mass and power of the spacecraft. On one hand, 
the fluctuations can cause the system to exceed its design limitations, which results in a 
spacecraft that does not fit in the design boundaries and would require a costly redesign. 
On the other hand, the fluctuations can result in an overly conservative design that greatly 
reduces the mission’s capabilities and performance. This is the case when excessive overesti-
mate contingencies are used as design margin. 

Use of contingencies is a common engineering approach to counteract risks associated with 
design uncertainties. This approach can be applied at the component level, at the subsys-
tem level, and at the system level. The contingency applied is generally a deterministic 
number added to the design value. This approach is different from the statistical method 
that performs probabilistic assessment of the fluctuations in order to develop a representa-
tive probability distribution function (pdf). The pdf provides probabilistic characterization 
of the design metric, and expresses the design value typically as mean and its fluctuation 
as variance (or sigma, σ ). This approach has been used in statistical link analysis [2]. In this 
article, we extend this approach to the general areas of spacecraft communication system 
design and spacecraft system design.  

The statistical approach uses mathematically tractable techniques to combine uncertainties 
at the subsystem level, and expresses the design risk at the system level. This allows risk–
performance trade-off and enables risk-based system design and optimization.   

The aforementioned design challenge of striking the right balance between a conservative 
approach and a risk-taking approach in the absence of definitive information is evident in 
all spacecraft subsystems, and in particular for the communication subsystem. Different 
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publications [2–5] suggest that communication systems typically represent a large fraction 
of the total spacecraft mass and power. Hence, fluctuations in mass and power of the com-
munication system would have a significant impact on the overall spacecraft design. This 
phenomenon is valid for spacecraft applications like commercial satellites, space relays, and 
small satellites. 

A considerable amount of work has been done to identify the reasons for which the final 
values of mass and power fluctuate significantly from the initial values. Specifically, the 
causes for these fluctuations can be divided into two main categories:

•	 Fluctuations due to lack of human interaction between designers: a team composed of 
different engineers working together on a project can, for lack of interaction, develop 
subsystems that do not fit well together and that require a partial redesign, which results 
in mass, power, and cost deviations.

•	 Fluctuations due to lack of knowledge: this is the case in which a lack of definitive infor-
mation in the mission implementation, or in the fabrication of the components, leads to 
deviations of mass, power, and cost values.  

Different facilities have been established with the goal of improving the interaction among 
project system and subsystem engineers. Examples are the Project Design Center (Team X) 
at the Jet Propulsion Laboratory and the Concurrent Design Facility (CDF) at the European 
Space Agency (ESA). 

While there are ongoing efforts to overcome the lack of interaction among engineers, much 
less work is being done to overcome the lack of knowledge. This is reasonable, since during 
the initial stage of the design when there is a long lead-time, it is often impossible to create 
a design with accurate prediction of future capabilities. However, even if we cannot avoid 
the uncertainties in the design, statistical instruments can be used to quantify and to miti-
gate the design risk in a mathematically tractable manner.  

In this article, we describe a methodology that uses statistical analysis to quantify the risk 
posture of a system design. This approach enables engineers to evaluate the design risk of 
different architecture options, to perform risk–performance trade-off, and to make oppor-
tune design adjustments through different system design phases up to preliminary design 
review (PDR) and critical design review (CDR).  

The statistical analysis framework uses a combination of two information sources: historical 
data and expert opinion. The information conveyed by data and by experts is elaborated 
through a cluster of different statistical techniques, with the objective of calculating the 
overall design risk. 

The following is a summary of prior work that addresses the problem of design risk. Cortel-
lessa [6] categorized the different possible design risks. Meshkat [1] analyzed design risk on 
the basis of her experience in Team X, and described different cases in which she observed 
“significant deviations in mass and power” from the initial system design to the final 
system design. Barrientos [7] explored the causes of design risks, and focused on the lack 
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of human interaction across engineers. Oberkampf [8] analyzed the causes of risks, while 
Asnar [9] developed qualitative risk analysis techniques to deal with the problem of select-
ing across design alternatives. 

A more quantitative approach to design risk can be found in the work of Fuchs and Neu-
maier [10–12]. The authors described a statistical approach based on the creation of an 
n-dimensional cloud of uncertainties in which the different architectural solutions lie. The 
dimensions of the cloud are given by the different metrics on which the uncertainty is eval-
uated, and the cloud becomes smaller as the desired confidence in the solution increases 
(or risk decreases). The shape of the cloud is defined by expert opinion. This methodology 
represents the first attempt to statistically model the lack of knowledge in the space system 
design process. However, this methodology is multidimensional based on expert opinion 
only, while our approach uses a statistical combination of data and experts.

In terms of previous work in statistical estimation, relevant literature can be found in the 
fields of probability density estimation and expert elicitation.  

In the area of density estimation, the different methods are described in the work of Fix 
and Hodges [13], Rosenblatt [14], Parzen [15], Loftsgaarden and Quesenberry [16], and 
Breimen, Meisel, and Purcell [17]. A description and comparison of different methods can 
be found in the monograph of Silvermann [18]. 
 
In terms of expert elicitation, the work of Tversky and Kahneman [19,20] is influential in 
the field of biases and heuristics in expert elicitation. Another important source is the work 
of Cooke [21], which focuses on building expert mathematical models to be used in sci-
ence. Hagan’s work [22,23] describes different ways to exploit expert opinion using Bayes-
ian analysis, elicitation processes, subjective probabilities, calibration, and expert coopera-
tion. Other important work in the field of expert elicitation is described in the papers of 
Garthwaite, Kadane, and Hagan [24], and Cain and Detsky [25].

The article is structured as follows: a methodology overview is presented in Section II. 
The details on the baseline model are described in Section III. The key statistical analysis 
techniques are outlined in Section IV, risk analysis in Section V, application examples are 
discussed in Section VI, and concluding remarks are presented in Section VII.

II. Methodology Overview 

The key features of the methodology are summarized in the block diagram in Figure 1.  

As inferred from Figure 1, the approach can be decomposed into different modules, each of 
which represents a specific part of the methodology.

The baseline design is the first conceptual block of the methodology. This block consists of 
three components: 
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Figure 1. Methodology block diagram.
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(1)	 A parametric model of a communication system that receives as inputs a set of 
communication parameters (channels, frequencies, required link quality, weather 
assumptions, transmitter/receiver characteristics, etc.) and produces as outputs the 
initial estimates (average values) of communication system performance, mass, 
and power. 

(2)	 A list of figures of merit (FOMs) with design requirements that include, but are not 
limited to, communication performance, mass, and power.  

(3)	 A validation process that compares the outputs of the parametric communication 
model against the FOMs, and evaluates if a given set of input communication 
parameters would produce an architecture that passes the initial test of meeting or 
exceeding the design constraints.  

The objective of this first block is to identify one or more communication architecture can-
didates that would satisfy the given design constraints. The baseline design tries to emulate 
what is generally done in the initial concept design phase before applying the contingen-
cies. In the context of the research, this block is important because it represents the starting 
point at which the risk analysis will be applied to quantify the risk of each solution. 

Once the baseline architecture is selected, different statistical techniques are employed to 
perform risk assessment. The block defined as “Statistical Techniques” collects all the tech-
niques that are used to perform risk estimation. They can be divided into three different 
categories:
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•	 Historical data approach. One way to quantify how the mass and power of a specific 
component vary over time is to perform statistical analysis of previous samples of similar 
components. The use of historical data requires different steps: the identification of 
the appropriate statistical techniques and models, the identification of the number of 
samples required (which is generally a function of the statistical technique selected), the 
construction of the database, and the use of the database to shape distributions.

•	 Expert opinion approach (expert elicitation). In the cases when there are not enough samples 
for classical probability techniques to construct a reliable statistical model, one might 
have to resort to the subjective opinions of one or more knowledgeable experts. The 
introduction of expert opinion in the model requires different stages: clear definitions 
of the design scenarios and the design constraints, a technique to calibrate the expert 
opinion, a methodology to elicit expert opinions, and an approach to compose multiple 
expert opinions when more than one expert is available. 

•	 Combined approach (data and expert). In some cases, it is useful to combine both sources of 
information into a unique estimate. This can be done by applying the Bayesian tech-
niques in which the database information is used to model the prior distribution, and 
expert opinion is used as a likelihood function to construct the a posteriori distribution. 

Once the statistical technique to evaluate the risk is selected, one can compute the different 
tail probabilities (probability of exceeding a certain value) at the component level and at 
the subsystem level. The overall risk of the system can be estimated by “combining” all the 
individual tail probabilities.    

III. Baseline Model

The baseline model is developed in a similar way as was the case with other analog com-
munication system design methodologies (see Maral and Bousquet [26], Richharia [27], 
Evans [28], Brown [29], Wertz [5], and Gilchriest [30]. One distinction is that our model is 
paired with a coverage tool that calculates the minimum transmission rate required. In this 
way, the system is optimized because the data rate selected is the minimum required to ac-
complish a certain mission. The model is organized in three submodules: coverage module, 
link analysis module, and average mass and power calculation module. A description is 
provided in the block diagram in Figure 2.

The inputs for the baseline design model are number of communication channels required, 
central frequency for each channel, level of redundancy, transmitter and receiver character-
istics, orbital parameters, simulation time, link quality requirements, mission data return 
requirements, and link margin.

The model performs link budget calculations for each of the communication channels to 
identify the system feasibility (similar to [31] and [32]), which is defined as the ability of 
the communication system to transmit the total data required in the specified interval of 
time. If the system is feasible, the model identifies for each channel a set of architectures so-
lutions that provide an identical equivalent isotropic radiated power (EIRP) that meets the 
given performance requirements. Each of the solutions corresponds to a different optimized 



7

Figure 2. Block diagram for baseline design model.
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combination of amplifiers, transceivers, and antennas that achieves the same EIRP for a spe-
cific channel. Finally, the results for the different channels are summed together to obtain a 
list of final possible architectures. 

Any architecture represents a collection of components whose power and mass fluctuate 
over time. The risk model attempts to characterize the fluctuations so as to compute the 
design risks for the different architecture solutions.  

The baseline parametric communication model generates the EIRP required to meet the per-
formance requirements for each channel and a corresponding list of architecture options. 
The architecture option is associated with a list of constituent components; each is de-
scribed with the baseline attributes of mass, power consumption (for passive components, it 
is set to zero), and its gain or loss contribution to the link budget performance.  

A validation of the baseline model has been performed using data from current missions 
and commercial satellites. Specifically, the link analysis part of the model has been validated 
by comparing the EIRP calculated by the model with the one obtained from the technical 
documentation of the different missions. The results are shown in Figure 3. 

Note that the values of the EIRP computed by the model are very close to those in the proj-
ect documentation. The variations are due to the slight differences in the noise temperature 
calculations, or in the modeling of the spacecraft pointing errors. 

A similar validation has been performed by comparing the values of mass and power com-
puted by the model with the values obtained from technical documentation. 
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Figure 3. Baseline model validation.

IV. Statistical Techniques

The statistical techniques used in the model can be divided into three categories: database 
approach, expert elicitation approach, and combined approach.  

A. Database Approach

The database approach uses historical and empirical mission data to estimate the mass and 
power distributions of a component. The reasons are:

•	 Heritage. Many missions inherit their components from previous missions. Hence, the 
final values of mass and power of components in prior missions can be used to develop 
a prediction for the mass and power values of components that are being considered in 
the communication system design.

•	 Independence from human opinion. Ideally, it is desirable to be able to develop analyses that 
depend as much as possible on data and not on human opinions/experience. However, 
in many cases, the use of expert opinion is inevitable (more details are provided in the 
following sections). 

A prerequisite to constructing a useful database model is that there are enough samples 
to generate representative statistics for the parameters of interest. This problem can be 
challenging as components for space communication systems have hitherto low market 
demands, and are thus produced in low quantities. Traditional probability density estima-
tion techniques are divided into two main categories: parametric and nonparametric esti-
mations. In the case of this research, it is difficult to estimate the shape of the probability 
distribution because many factors are affecting the process. For example, if we consider the 
probability distribution of the mass of a component, it is influenced by functionality of the 
component, materials used, fabrication processes, etc. It is difficult to model all the effects 
with governing equations; thus, we cannot always assume a parametric distribution. It is 
therefore necessary to model the data through nonparametric density estimation. 
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Nonparametric density estimation techniques process observed data to construct an esti-
mate of the underlying probability density function [18]. Many of these techniques can be 
shown to converge to the true density function when the sample size approaches infin-
ity [43]. However, there are few works in the literature that assess the usefulness of these 
techniques when the sample size is small, which is the case for components of spacecraft 
communication systems. In this article, we develop an experimental approach to investi-
gate the convergence rates of a given set of nonparametric density estimation functions 
for small sample sizes in the range between 10 and 100. The key steps are summarized as 
follows: 
 

•	 We choose the following density estimation techniques for comparison: histogram, naïve 
estimator, kernel estimator, nearest neighbor estimator, variable kernel estimator, and 
saddle point estimator.  

•	 To compare the “goodness” of the chosen density estimation techniques, we use the 
following known distributions as benchmarks: normal, exponential, lognormal, gamma, 
and beta.  

•	 For a given probability distribution function fPDF (x), we define the tail function 

T (x) = fPDF (u)du
x

3# , and the estimated tail function ( )T xj  that is constructed by 
processing the samples at j -th trial using a density estimation technique. We vary the 
sample size between 10 and 100. We further define two quantities to assess the goodness 
of each density estimation technique:  

	 — The divergence across the k trials between real tail (T (x)) and estimated tail ( ( )T xj ) for 
each point of the distribution (x):  

( ) ( ) ( )x T x T x
k

1
j

j

k

1

D = -
=

/
 

— The average divergence across the distribution for a certain amount of samples n 
(L1 metric):  

( )x x dx:D D= #

•	 For a given benchmark distribution fPDF (x), we compare the average divergence D  gen-
erated using different density estimation techniques for different sample sizes.  

An example of the average divergence using the Gaussian benchmark is shown in Figure 4.  

The experimental analysis reveals the following interesting facts:

•	 Histogram. Generally achieves the worst performance compared to any other technique.

•	 Variable kernel estimators and nearest neighbor. The performances vary strongly accord-
ing to the benchmark distribution used (e.g., good with normal, bad with beta). These 
techniques can be helpful in some contexts, but without any previous knowledge of the 
“real” distributions, they can behave in an unpredictable way.

•	 Saddle point estimation. It achieves good performances for very small sample sizes (10 to 
20) compared to the kernel density estimation; however, it does not converge as fast as 
the kernel techniques when the number of samples increases. 

(1)

(2)
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Figure 4. Average divergence in function of the number of samples using Gaussian benchmarks distributions.

• 	Kernel density estimators and naive estimator. They achieve the minimum divergence in 
most cases. 

In conclusion, the numerical analysis discussed above shows a consistent trend on the rela-
tive goodness (in terms of average divergence) of different density estimators in the case of 
small sample sizes. Specifically, the kernel density estimation technique achieves the lower 
bound in average divergence for all the cases analyzed. For this reason, the kernel density 
estimation is the technique selected to model database statistics. In the Appendix, we de-
rive the following properties of the kernel density estimator (KDE) that are relevant to risk 
estimation:  

•	 The mean computed from the KDE is the sample mean, which is an unbiased estimator 
for the underlying density function. [Equation (A-3)]

•	 The variance computed from the KDE is the sum of the sample variance and h2, where 
h is the smoothing parameter of the kernel function K (x). This and the above properties 
imply that the probability distribution function generated by the KDE always overesti-
mates the risk probability. [Equation (A-4)]

	 Note that Equations (A-3) and (A-4) are general expressions that apply to all KDEs. As all 
KDEs and the naive estimator1 use the same h  for a given sample size n, their divergence 
should be identical. This is indeed the case, as shown in Figure 4.   

1  The naive estimator is a form of KDE, with the kernal being a uniform distribution function.	
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•	 In general, h decreases in value as n increases. Thus, the overestimation of risk is more 
severe for small n. In the case of the Gaussian kernel estimator, the overestimation factor 
of variance compared to the sample variance can be shown to be 

n3
4 5

2

` j , and is illustrated 
in Equation (A-5) and in Figure A-1. Note that h " 0 as n " 3, but the convergence rate 
is slow for large n.  

To establish a database for spacecraft communication system components (and spacecraft 
systems and subsystems in general), the key challenge has always been overcoming the 
difficulties in locating the details of engineering specifications of the components. The 
manufacturers of spacecraft components do not typically reveal these data in the open 
literature. Up to now, data have been collected from different literature sources. Data are 
extracted from sporadic articles on the design of specific components for communication 
systems [29,30,33–35]. Another source of data comes from JPL’s Deep Space Communica-
tions and Navigation Systems Center of Excellence (DESCANSO) publications: a collection 
of design documents for the JPL communication systems of the different missions, e.g., 
Voyager, Galileo, Cassini, etc. Each document [2–4,36–42] contains a detailed description of 
the spacecraft communication system, as well as the mass and power consumption data for 
each component. 

The database approach uses samples data to construct the probability distributions of the 
mass and power of a component. However, one challenge is that the mass and power of a 
component depends on many other factors. For example, the mass of an antenna depends 
on the gain and on the frequency. Hence, if we have in the database the mass of a particular 
antenna, these data can be applied only to estimate masses of antennas with the same gain 
and frequency. This would require collecting an enormous amount of data, which is not 
feasible in the area of spacecraft system and subsystem design. In order to avoid this effect, 
we propose the following parametric approach. 

Each sample collected is converted into a coefficient that represents a relation between two 
parameters. For example, instead of collecting the mass values of the antennas for all the 
possible gains, the mass data collected are converted to mass per unit of gain. In this way, 
for the same frequency or band, samples corresponding to antennas with different gains can 
be used in the same data set that creates the mass distribution of an antenna with the same 
frequency. The density construction process goes as follows: First, we specify the design met-
ric of the component that needs the probabilistic characterization. For example, if we esti-
mate the probability distribution of the mass of an antenna, the design metric would be the 
antenna gain. Other inputs include the type of component (e.g., an antenna, a transceiver, 
an amplifier, etc.), its frequency band, and its category (low-gain antenna, medium-gain 
antenna, high-gain antenna). Type, category, and frequency band are used in the database 
to identify the data set that is relevant to a specific type of component. When the vector is 
extracted from the database, the value of the design metric is used to scale the distribution. 
At that point, a probability distribution is generated using the kernel density technique. The 
mathematical formalization of the approach is presented in the following equations, where 
a  is a vector of scalar coefficients of mass per unit of gain (G), f  is the probability density 
for the mass of a component, x  is the support of the distribution, and k is the kernel den-
sity estimator:
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(3)

 (4)

( )f x f x G
G
1 : := ^ h

The function k (kernel density estimator) can be expressed as: 

,k x a
n h

G K
h

x a G1 i

i

n

1:
: :
=

-

=

^ ch m/

where n is the total amount of elements of vector a , and ai  represents any single element 
of the same vector; h  is the bandwidth of the kernel estimator, and it is selected to optimize 
the estimation by reducing the minimum square error [43]. The function K  is the kernel: 
a symmetric but not necessarily positive function that integrates to one. In our testing, 
multiple kernel functions have been considered, and a normal kernel was selected because 
it achieves the best performance according to Figure 4.  

The result is a probability distribution that takes into account the historical data (using a set 
of coefficients) that corresponds to the design metric for which the specific component will 
be designed. Following this procedure, data can be used for different statistical characteriza-
tions without the necessity of accumulating too many samples for different specific designs. 
The only caveat in this approach is that the mathematical operation performed is a trans-
formation of a probability density, which holds true only if the two variables considered 
(here, mass and gain) have a linear relation with each other. For some components, this is 
true: Brown [29] shows that for the traveling-wave tube (TWT) amplifiers, there is a linear 
relation between mass and output power, and between input power and output power. 
However, in some cases, the relation between the two quantities is not necessarily linear, 
such as in the case of the antennas. To solve this problem, the nonlinear function is decom-
posed in a set of linear approximations through a convex piecewise linear approximation. 
This corresponds to breaking the nonlinear curve into multiple pieces, which, in the case 
of the antenna, corresponds to different regimes of antenna gain: low gain, medium gain, 
high gain. This is the reason why one of the inputs of the database model is the component 
category. When we search for the set of coefficients in the database required to construct 
the distribution, it needs to know which category the antenna belongs to, in order to select 
the coefficients that correspond to the correct linear piecewise approximation.

B. Expert Elicitation Approach

The aforementioned database techniques adhere to the “classical”or “frequentist” interpre-
tation of probability, for which the probability density function is estimated from historical 
data only. Classical statistical methods are ill suited for the situations when the sample size 
is small.   

In the area of spacecraft communication system design, there are experts in the field who 
can provide subjective assessments of the mass and power of future components based on 
their experience and their understanding of the market trends, product availability, and 
technology readiness. In this section, we explore expert elicitation techniques that extract 
and incorporate expert opinions in the risk-based system design process.  
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Before describing the approach, the reasons to use expert elicitation in spacecraft system 
design are given as follows:  

•	 Required sample size. Classical probability theory shows that representative statistics can 
only be estimated from a sample when the sample size is large enough.2 Most spacecraft 
components, which include communication system components, are usually produced in 
small quantities and do not constitute a large enough sample size.  

•	 New components. Completely new components are sometimes tested or used in space mis-
sions. If a component is first of a kind, obviously no statistic is available. In this case, a 
different approach is required.

•	 Rapid technical advances. Some spacecraft components evolve so fast that historical data 
are not useful to generate representative statistics. Examples are onboard processing units 
and flash memory. Generating the mass and power statistics for these kinds of compo-
nents using a historical database will tend to produce overestimations. 

Expert opinion can be viewed as a form of external knowledge that is introduced in the 
model, with the objective of substituting or improving the knowledge given by the his-
torical data. However, as O’Hagan [22] points out, expertise also involves how the person 
organizes and uses the knowledge. In fact, to have an effective elicitation of the expert’s 
knowledge, the expert has to be able to express his or her uncertainty of the knowledge ac-
curately. 

In order to properly model expert opinion, it is necessary to:

•	 Identify possible biases and heuristics that the expert may have in expressing his or her knowl-

edge and the corresponding uncertainty. Biases can be defined as the tendency to make 
systematic errors in certain circumstances based on cognitive factors rather than on evi-
dence. Heuristics are simple, efficient rules that are applied to make decisions, to express 
judgments, and to solve problems, typically when facing incomplete information. These 
rules can lead to systematic errors. 

•	 Identify the level of adjustment required to calibrate the expert opinion. In the field of expert 
elicitation, calibration is a measurement of the agreement between expert opinion (sub-
jective probability) and observed relative frequency. For example, if we asked a weather 
expert to guess rain probability for a year on the basis of available data and we record the 
real rain frequency for that year, we can assess how well our expert is calibrated, that is, 
whether he or she would tend to underestimate or overestimate probabilities.

•	 Elicit the probability models from experts. This last part involves the selection of appropri-
ate statistical quantities that can accurately express the belief and the uncertainty of the 
experts. They can be bounds, mean, variance, quantiles, etc. In the case of this research, 
two possible elicitation techniques will be used.

To accomplish the three above steps, we developed a three-part interview technique to cali-
brate and to extract probabilistic modeling information from the experts. 

2 Examples include the law of large numbers, Chebyshev’s inequalities, and Markov’s inequalities. 	
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Part 1 of the interview is called Probabilistic Thinking. This part contains general questions 
(a total of 16 in this case) on probability that are used to model the expert’s ability to think 
probabilistically. The result of this part is the generation of a quality index that can be used 
to compare and to weigh opinions from different experts. This part of the interview is fo-
cused on mapping the possible biases and heuristics that experts can have. Specifically, the 
following biases are identified and mapped:

•	 Hindsight bias. It can happen when a person is asked to assess the a priori probability of 
an event that has actually occurred.

•	 Small sample bias. A person sometime forgets that the size of a sample affects the prob-
ability of obtaining certain results. 

•	 Judgment by availability. It is used when a person judges the probability of an event ac-
cording to the ease with which similar events or instances are called to mind.

•	 Judgment by representativeness. Instead of evaluating the conditional probability, a person 
might tend to judge on the base of the similarity between events.

•	 Awareness of underlying conditional probabilities. It is a bias that occurs when a person does 
not consider how underlying probabilities can affect conditional probabilities.

•	 Judgment by anchoring and adjustments. It happens when a person is asked to estimate a 
quantity; he or she might start with an initial estimate (“anchor”) and then just makes 
minor adjustment with respect to the initial estimate as the person’s thinking progresses. 

•	 Coherence. It is a check on whether a person respects the basic coherence laws of probabil-
ity (the sum of all probabilities adds to 1, and the intersection of independent events is 
the product of the respective probabilities).

The result of part 1 is the generation of a total score (S) between 0 and 100 that is the sum 
of the scores the expert would achieve after answering all the questions. The quality index 

(Q) is the normalized score that can be used to weigh multiple expert opinions.  
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Part 2 of the interview is called Calibration. This part contains technical but general ques-
tions on mass and power for communication system components. Experts are required to 
estimate the mass and power for typical components, and their answers are used to identify 
if the expert has the tendency to underestimate or overestimate certain quantities. The 
interview in this part results in a calibration coefficient (C) that can be used to shift the 
final probability assessments performed by the experts. For each of the questions in the 
calibration part, the real values of mass and power (ri) are known. Hence, given the expert 
estimate (ei), each calibration coefficient can be computed as

ic
r
e r

i

i i=
-

   (5)

(6)

(7)
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The final calibration coefficient (C) is computed as the average of the individual  
coefficients:

C
n

ci
i

n

1= =

/

The last part of the interview is the Expert Elicitation. In this part, the interview aims at 
helping the expert to express his or her belief on the mass and power values for certain 
components and their corresponding uncertainties, and translate the expert’s estimate into 
a density function. Two different approaches are chosen to construct the density function 
based on the expert’s belief and uncertainty of a component: an approach derived from 
statistical link analysis, and the quantile method. 

The approach derived from statistical link analysis [2] first provides the initial design value 
of the component as the starting point. The interview will then elicit three quantities from 
the expert: lower bound, upper bound, and the form of the distribution (uniform, triangu-
lar, or normal).

In the quantile method, the expert elicits the 50 percent quantile, the 16 percent quantile, 
and the form of the distribution (uniform, triangular, or normal).

A recursive tool allows the expert to visually check the shape of the distribution that results 
from the elicitation process, and to modify it until he or she identifies the one that prop-
erly expresses his or her belief.

The key aspects of the methodology are summarized in the triangular scheme described in 
Figure 5.

The interview includes 16 questions for Probabilistic Thinking, 17 questions for Calibra-
tion, and multiple test cases for Expert Elicitation. The duration is approximately 1 hour 
and 30 minutes.

The interview was performed on three different populations: MIT undergraduate students, 
MIT graduate students, and JPL engineers. The students are not experts in the design of 
spacecraft communication systems; hence, they were tested only for part 1 (Probabilistic 
Thinking). The JPL engineers participated in all three parts of the interview. The data col-
lected from the interview are still being processed, and we show some preliminary results in 
this article.

Figures 6, 7, and 8 show the total score for Probabilistic Thinking across the three popula-
tions: undergraduate students, graduate students, and JPL engineering, respectively. 

The results are relatively close to each other, proving that the test works well across differ-
ent populations. When categorized by number of experiences in probability training (each 
experience can indicate a class or a period of research in which the subject intensively used 

(8)
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Figure 5. Summary of expert elicitation methodology (expert triangle).

Figure 6. Quality score for part 1 (undergraduate students). Total score: mean is 61 and variance is 198.5.
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Figure 7. Quality score for part 1 (graduate students). Total score: mean is 60.1765 and variance is 132.6544.

Figure 8. Quality score for part 1 (JPL engineers). Total score: mean is 61.875 and variance is 111.5536.
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probability), all categories show similar dispersions of quality scores. This is shown in Fig-
ure 9 and suggests that ability in probabilistic thinking is independent from the experience 
in probability.  

The calibration coefficients are shown in Figure 10. 

This coefficient is an average across all the coefficients computed for the different calibra-
tion questions in part 2. The final coefficients (Figure 10) are all positives, which indicates 
that the experts generally tend to overestimate quantities. This result is not surprising, as 
engineers tend to be conservative in their risk estimates.

To evaluate the elicitation part of the interview, test cases have been used. They correspond 
to missions already developed for which the authors know all the data (from initial concept 
design up to CDR). The results on the elicitation part are discussed in Section VI on applica-
tion examples.

C. Database and Expert Integrated: Bayesian Approach

The third possible way to assess risks for mass and power fluctuations is to combine the 
sources of information given by data and by expert elicitation. We propose to use the Bayes-
ian framework that treats the data statistics as the prior, and the distribution that results 
from the expert elicitation process as the likelihood function. The resulting posteriori distri-
bution represents the combined estimate:  

( )
( ) ( )

( ) ( )
f x

f f x d

f f x
combined

data expert

data expert

:

:

j j j

j j
=
#

where x is the support of the distribution and j is the set of data (from the database) on 
which the kernal density is computed. This part of the approach is still under study, so it 
will not be applied to the examples discussed in Section VI.

V. Risk Analysis

In the context of designing a spacecraft communication system that meets the given mass 
and power allocations, the risk analysis method receives as input a given design and esti-
mates the probability that the overall mass or power of that design would exceed the given 
allocations. This probability is computed using one of the three techniques previously 
discussed: database approach, expert elicitation, or a combination of the two. 

In the case of the database approach, density estimation is used to compute the probability 
distributions. Currently, the size of the database is limited to no more than 40 samples for 
each category of components, and the samples tend to take on a wide range of values. The 
distribution constructed from these samples is inclined to have a larger dispersion. This 
problem will be discussed more in the application examples in Section VI, but it is one rea-
son for which the use of expert opinion is strongly encouraged. 

(9)
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Figure 10. Average calibration coefficient for engineers (part 2). Total calibration coefficient:  

mean is 0.23079 and variance is 0.019651.

Figure 9. Quality score vs. experience in probability for the three populations.
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In the case of the expert elicitation, the accuracy of their judgments is difficult to measure, 
but the three-part interview that includes quality estimation (part 1) and calibration analy-
sis (part 2) can be used to quantify the expert’s precision. An additional advantage of using 
expert elicitation is that when an expert is confident, he or she would impose a smaller 
uncertainty range with respect to his or her assessment, and this helps to generate a “nar-
rower” distribution function compared to the one constructed by the database approach 
(more details on this aspect are in Section VI).  

The combined approach is currently under development; hence, the application examples 
will include mostly results derived from the database approach and expert elicitation only.

The next section contains a mission example of the methodology discussed.

VI. Application Example — CASTOR

The example discussed in this section is based on a mission developed at Massachusetts 
Institute of Technology called Cathode/Anode Satellite Thruster for Orbital Repositioning 
(CASTOR).

CASTOR3 is a small Evolved Expandable Launch Vehicle (EELV) Secondary Payload Adapter 
(ESPA) ring class satellite developed at MIT Space Systems Laboratory. The satellite dimen-
sions are 50 × 50 × 60 cm for a total mass of 50 kg. The main goal of this spacecraft is to 
test the performance of a new type of electric propulsion engine, the Diverging Cusp Field 
Thruster (DCFT) in the space environment. The DCFT is able to guarantee up to 1 km per 
second of ∆V. This type of engine is very efficient in terms of mass/impulse ratio, and the 
whole system is capable of performing rapid orbital transfer maneuvers. The deployed con-
figuration of the CASTOR satellite is shown in Figure 11.

The CASTOR bus has been developed entirely at MIT over a four-year period. This makes 
CASTOR a suitable example for this analysis, as all the data of the spacecraft communica-
tion system that evolved over time are available4 [32]. Specifically, the data in which we are 
interested are:

•	 EIRP required. This input is important to validate the baseline model.  

•	 Configuration of the communication system. The types and number of antennas, the types 
and number of transceivers, and any other additional components.

•	 Initial values of mass and power at the PDR level for the components of the communication 

system. These values are used to perform the risk estimation using the database approach 
and the expert opinion approach. 

•	 Final values of mass and power at the CDR level for any components of the communication 

system. These values are used to evaluate the statistical estimation methodology that was 
developed.

3 CASTOR Design Document (internal document), Massachusetts Institute of Technology, Cambridge, Massachusetts, 2011. 

4  Ibid.	
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The CASTOR communication system is a fully redundant system composed of three an-
tennas and two modems. The three antennas are custom-built patch antennas, each with 
approximately 6 dB of peak gain. The modems are Microhard MHX2420, a commercial-off-
the-shelf (COTS) product. The configuration of the system is the following: one antenna is 
connected directly to one of the modems, while the other two antennas are connected to 
the second modem through a passive splitter. 

The operating frequency of the system is in the S-band, and the ground stations are the 
same ones used by the High-Energy Transient Explorer (HETE) missions. These consist of a 
network of ground stations owned by MIT’s Kavli Institute. The ground stations are located 
in Singapore, Kwajalein, and Cayenne, French Guiana.

The CASTOR mission is used in conjunction with other missions to validate the baseline 
model, as shown in Section III. In this section, the CASTOR mission is used to perform the 
risk assessment. The risk analysis investigates the fluctuations of the mass and power values 
of the spacecraft antennas and the transceivers over time. The results are shown in the fol-
lowing subsections.

A. CASTOR Antenna 

The three antennas are all identical; hence, we discuss the mass fluctuations of one of them. 

The antenna has passed through different design phases. Initially, it was supposed to be a 
COTS patch, but then, due to a vibration concern, the team resorted to a custom-made an-
tenna. The material selected for the mission changed across the different versions until the 
final configuration was reached after the CDR. 

The initial mass of the antenna was estimated to be around 0.5 kg, while the final value 
became 0.1 kg. This shows that the initial estimate was clearly overestimated. 
 

Figure 11. CASTOR satellite.
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The risk analysis was performed using the database approach and the expert opinion ap-
proach. For the database statistic, the following steps were followed:

•	 Definition of the component type and category. In this case, it is an antenna that belongs to 
the low-gain category. This information is used to select the correct vector of data in the 
database.  

•	 Definition of the frequency. In this case, S-band.

•	 Definition of the performance metric. In this case, the performance metric is the peak gain 
of the antenna pattern, which is used to scale the vector of data in the database.

•	 Estimation of the final probability density function of the antenna mass and the evaluation of 

its corresponding tail.  

For the expert opinion approach, the experts were asked to elicit the probability distribu-
tion that the mass of the antenna would exceed the value of 0.5 kg. Different experts have 
been tested, but since most of the data are still under analysis, we refer only to one of them 
as an example. The work on composing different expert opinions is ongoing.  The expert 
being interrogated understood immediately that the initial value of the antenna mass was 
an overestimation. The expert assessment for the probability distribution of the antenna 
mass was performed using the quantile method, and it resulted in a triangular distribution 
centered at 0.25 kg, and bounded between 0.05 kg and 0.5 kg, respectively.  

The information obtained from the database approach and the expert elicitation approach 
was used to estimate the probability distribution fPDF (x)^ h functions and the tail function, 
which is defined as

( ) ( )T x f u duPDF
x

=
3#

Tail functions are popular in risk assessment applications, since they can express risk in a 
very visual way. The y-axis represents the risk of exceeding a certain mass value indicated 
on the x-axis.  

The results of the risk estimation performed using the database approach and the expert ap-
proach are shown in Figure 12 (probability densities) and in Figure 13 (tail function).

Specifically in Figure 12, both densities (database and expert) have peaks that are closer 
to the final mass value at CDR than in the PDR. This is important as it shows that both 
methods are effective in speculating the eventual value, with the database curve providing 
a better prediction than the expert curve. However, in the database approach, the density 
function exhibits a stretch-out shape with a fat tail (or heavy tail) as shown in Figure 13, 
indicating an over-estimation of the mass margin required to retire a given design risk. 
For example, if the risk requirement of not exceeding the mass allocation is 0.1, the mass 
margin computed from the database method is 0.7 kg, whereas the mass margin computed 
resulting from the expert opinion approach is 0.3 kg. We believe that this is due in part to 
the positive bias on estimating variance using the KDE method, as described in Section IV. 
 

(10)
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Figure 12. Probability density function for CASTOR antenna mass (database approach vs. expert approach).

Figure 13. Tail function for CASTOR antenna mass (database approach vs. expert approach).
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In summary, both the database and the expert opinion methods generate density functions 
whose peaks allow us to recognize that the initial design value of 0.5 kg is overestimated, 
and that the expected value for the antenna mass should be less. The database approach 
identifies the mass value that is closer to the CDR value than the expert opinion approach. 
However, when it comes to risk quantification (tail graph), the expert opinion density func-
tion offers a much smaller mass margin than the database approach for the same level of 
design risk.
  
A similar analysis has been performed for the transceiver that is discussed in the next 
section.

B. CASTOR Transceiver

An analogous analysis has been performed with the CASTOR transceiver, and the results 
lead to very similar conclusions. The component is a COTS product from Microhard with 
an output RF transmitting power of 1 W. For this component, the initial values for mass 
and power consumption at the PDR stage were 0.11 kg and 1.5 W, respectively. The fi-
nal values after the CDR were 0.05 kg and 4.5 W. As observed, the initial estimate was an 
overestimation for the mass and an underestimation for the power. The underlying reason 
for the fluctuations in the values is mainly due to misunderstandings with the company. 
The component was already developed and built, but the data sent from the company 
were incorrect and the final values were assessed only when the component arrived at the 
laboratory.
 
As in the antenna case, the risk analysis for the transceiver was performed using the da-
tabase approach and the expert opinion approach. In the database approach, the steps 
performed are:

•	 Definition of the component type and category. In this case, it is a low-power transceiver. 
This information is used to select the correct vector of data in the database.

•	 Definition of the performance metric. In this case, the performance metric is the output 
transmitting power (1 W), which is used to scale the vector in the database.

•	 Estimation of the final probability density function and tail function for mass and power con-

sumption of the transceiver.

For the expert opinion approach, the experts were asked to elicit the probability distribu-
tion that the mass of the transceiver would exceed the value of 0.1 kg, and that the power 
consumption would exceed 1.5 W. The expert assessed the mass of the transceiver be-
ing distributed as a normal distribution centered in 0.15 kg with a 16 percent quantile at 
0.11 kg. For the power consumption, the expert estimated a uniform distribution between 
3.5 W and 5 W.

The probability density functions and the tail functions for the transceiver mass are shown 
in Figure 14 and Figure 15, respectively. The probability distribution functions and the tail 
functions for the transceiver power consumptions are given in Figure 16 and Figure 17, 
respectively.  
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Figure 14. Probability density function for CASTOR transceiver mass (database approach vs. expert approach).

Figure 15. Tail function for CASTOR transceiver mass (database approach vs. expert approach).
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Figure 16. Probability density function for CASTOR transceiver power consumption  

(database approach vs. expert approach).

Figure 17. Tail function for CASTOR transceiver power consumption  

(database approach vs. expert approach).
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We notice that the peak of the database probability density (Figure 14) is closer to the final 
CDR value, while that of the expert opinion distribution overestimates the transceiver mass. 
However, as in the antenna mass case, the opinion approach generates a narrower distribu-
tion than the database approach, and the overall effect is that it requires a smaller transceiv-
er mass margin, 0.2 kg versus 0.6 kg, to mitigate the risk of exceeding the mass allocation at 
0.1 risk level (Figure 15).  

In the case of the power consumption (Figure 16), the peaks of both probability densities 
are close to the final CDR value, showing that the initial guess on the power consump-
tion was clearly an overestimation. The tail functions (Figure 17) show once again that the 
expert approach is helpful to reduce the power margin compared to that using the database 
approach. 

The conclusion from this analysis is that the database approach seems to provide good 
insights as to what the final value of component mass should be. This is evident by the fact 
that in both cases (antenna and transceiver), the peaks of the probability density functions 
are close to the final values of the system. However, the weakness of the database approach 
is that, due to the limited number of scattered data, the distribution constructed typically 
reveals a wide shape, and requires more margin to mitigate a given level of design risk. 

On the other hand, probably due to the conservative mindset of most engineers, expert 
opinion tends to overestimate the mass and power consumption, as we observed in the 
above CASTOR antenna and transceiver experiments. However, an expert’s confidence helps 
to limit the variance (or spread) of the distribution, thus reducing the required margin 
needed to retire the design risk.  

Since both techniques have advantages and weaknesses, future work will focus on a Bayes-
ian approach that combines both sources of information in a mathematically tractable 
manner. 

VII. Summary

This article describes an approach to quantify the design risks for communication systems. 
The approach includes a baseline model that performs a preliminary design of the system. 
The baseline tool is useful in cases when a preliminary design is not yet available, or as an 
instrument to check if the preliminary design is reasonable. The risk assessment can be 
performed using one of three approaches: database approach, expert elicitation approach, 
and a combined approach.5 For the database approach, we describe a method used to evalu-
ate the best density estimation technique for small sample size scenarios. We also created 
a database of components for spacecraft communication systems. In the case of the expert 
elicitation, we developed a three-part interviewing process to assess expert bias and heuristic 
thinking, and to calibrate the expert’s tendency to underestimate or to overestimate. Finally, 
the risk model is tested on a university mission, CASTOR, for which the risk assessment is 

5 Work on the technique to combine the database approach and expert elicitation approach is ongoing. 	
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focused on the antenna and on the transceiver. The results reveal advantages and disadvan-
tages in both the database and the expert opinion approaches. Hence, a combination of the 
two approaches is suggested.
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Appendix 

Properties of KDE 

Kernel density estimation (KDE) is a popular nonparametric technique used to construct 
a probability density function from a finite set of samples of unknown distribution. Let 

x1,x2,g,xn be an independent and identically distributed (iid) sample drawn from some 
unknown distribution fPDF (x) of x  with mean mx and variance vx2. The kernel estimator 
|fPDF (x) is defined as

( ) ( )f x
n

K x x1
PDF h i

i

n

1

= -
=

| /

where Kh (:) is the kernel function such that Kh (x)dx = 1
-3

3# , and h  is a smoothing param-
eter.6 Note that h  is a free parameter that has to be chosen such that it is large enough to 
smooth out the irregular data artifacts, and at the same time small enough to preserve the 
underlying structure. Also, Kh (:) has to be continuous and symmetric with respect to 0. 
Common kernel functions include the uniform and Gaussian. Equation (A-1) can be rewrit-
ten as 
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where d(:) is the Dirac delta function, and * corresponds to the convolution operator be-
tween the two functions. From the form of Equation (A-2), one can interpret the kernel es-
timation process as a probability experiment of adding two independent random variables 
xd 7 and k, where xd is a discrete random variable that assumes values of x1,x2,g,xn with 
equal probability /n1 , and k is a continuous random variable with distribution Kh (x).  

Estimating the mean |m x of x  using |fPDF (x) corresponds to adding the means of xd  and k.  
As k has zero mean, |m x is given by the mean of xd : 

im
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which is the sample mean and is an unbiased estimator of x. On the other hand, estimating 
the variance |v x2  of x using |fPDF (x) is equivalent to adding the variance of xd and k, which 
is given by the following expression:
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Note that the first component in Equation (A-4) represents the sample variance of 
x1,x2,g,xn, and let us denote it by vx

}2. Thus, the variance |vx
}2 estimated using kernel den-

sity estimator |fPDF (x) is consistently greater than the sample variance.  

6 If Kh(x) is interpreted as a probability density function, h2 corresponds to its variance. 

7 This is in contrast to the continuous random variable x.  	
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(A-4)
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In the case of a Gaussian kernel 
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it is suggested that the optimal choice of h is8 
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and is displayed in Figure A-1 as a function of n. 

Note that the ratio decays rather slowly as n increases. For example, when n = 20 , the 
variance estimated by the Gaussian kernel estimator |v x2 is still 34 percent larger than the 
sample variance vx

}2.  

 

8 See B. A. Turlach, “Bandwith Selection in Kernal Density Estimation: A Review,” Institut de Statistique, Biostatistique,  
et Sciences Actuarielles, 1993 — download from the site at http://www.stat.ucl.ac.be/ISpub/dp/1993/dp9317.ps   

(A-5)

Figure A-1. Ratio of variances.
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